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ditions, the overall solution error may not be minimal.
This is a disadvantage of the method and is due to the
fact that the functional is only made stationary and is
not minimized.

ACRNOWLEDGMENT

The authors wish to thank D. J. Richards for discus-
sions regarding programming techniques and for ob-
taining the results presented in Fig. 2.

REFERENCES

[1] A. Wexler, “Computation of electromagnetic fields,” IEEE
Trans. Microwave Theory Tech., vol. MTT-17, pp. 416-439, Aug.
1969,

[2} P. C. Dunne, “Complete polynomial displacement fields for

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-20, NO. 6, JUNE 1972

finite element method,” J. Roy. Aeronaut. Soc., vol. 72, p. 245,
1969.

[3] D.T. Thomas, “Functional approximations for solving boundary
value problems by computer,” IEEE Trans. Microwave Theory
Tech., vol. MTT-17, pp. 447-454, Aug. 1969,

4] R. M. Bulley, “Analysis of the arbitrarily shaped waveguide
by polynomial approximation,” IEEE Trans. Microwave
Theory Tech., vol. MTT-18, pp. 1022-1028, Dec. 1970.

[5] F. B. Hildebrand, Methods of Applied Mathematics, 2nd ed.
Englewood Cliffs, N. J.: Prentice-Hall, 1965, p. 219.

[6] P. M. Morse and H. Feshbach, Methods of Theoretical Physics,
Pt. I1. New York: McGraw-Hill, 1953, pp. 1131-1132.

[7] W. J. English, “Vector variational solutions of inhomogeneously
loaded cylindrical waveguide structures,” IEEE Trans. Micro-
wave Theory Tech., vol. MTT-19, pp. 9-18, Jan. 1971.

[8] L. Fox, An Introduction to Numerical Linear Algebra.
England: Oxford Univ. Press, 1964, pp. 141-142.

[9] D. J. Richards and A. Wexler, “Finite element solutions within
curved boundaries,” to be published in IEEE Trans. Microwave
Theory Tech.

[10] S. G. Mikhlin, Variational Methods in Mathematical Physics.
New York: Macmillan, 1964,

London,

An Analysis of Gap in Microstrip
Transmission Lines

MINORU MAEDA, MEMBER, IEEE

Abstract—Although microstrip transmission lines have been
widely used in microwave integrated circuits, the discontinuity struc-
tures in the microstrip transmission lines such as a gap, an abruptly
ended strip conductor, and so on, have hardly been analyzed. An
analytical method and numerical results for a gap capacitance in the
microstrip transmission line are described. The equivalent circuit
parameters are formulated with three-dimensional Green’s func-
tions, based on a variational principle. The numerical results are in
good agreement with the published experimental data. The fringing
effect of an abruptly ended strip conductor is also investigated.

I. INTRODUCTION

ITH THE RECENT development of micro-
&;%/ wave integrated circuits, microstrip transmis-
sion lines have been widely used as fundamental
structures. Since the microwave integrated circuits are
fabricated through many processes, such as vacuum
deposition, sputtering, electroplating, photoetching, and
so on, it is primarily important to design the circuit
precisely.

Although a great deal of work has been published on
the properties of the microstrip transmission lines [1]-
[5], the theoretical and/or experimental results ob-
tained thus far have been almost entirely limited to the
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characteristic impedance and the phase velocity. Prac-
tical microwave integrated circuits, however, have been
constructed using a variety of discontinuity structures
in the strip conductor, such as a gap, an abruptly ended
strip conductor, a tee junction, and so on. Since the dis-
continuity structures have not been investigated yet,
there appears to be a need for rigorous theoretical for-
mulas on the discontinuity structures.

This paper describes an analytical method and nu-
merical results for a gap capacitance in the strip con-
ductor of the microstrip transmission line. The gap
capacitance of the symmetric-strip transmission line
has been investigated theoretically and experimentally
by Altschuler and Oliner [6]. For the gap capacitance of
the microstrip transmission line, however, only experi-
mental results obtained by Stinehelfer have been pub-
lished [7]. The analytical method presented here em-
ploys a variational principle for formulating the prob-
lems based on an electrostatic approximation, and de-
rives the theoretical expressions for the equivalent cir-
cuit parameters using three-dimensional potential
Green's functions. The numerical results, obtained with
the aid of a digital computer, are compared with the
published experimental data. The derived formulas can
be applied to investigate the fringing effect of the
abruptly ended strip conductor when the gap is of in-
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Fig. 1. Physical structure of gap in microstrip transmission line,
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Fig. 2. Gap in microstrip transmission line. (a) Physical structure,
(b) Equivalent circuit. (c) Equivalent circuit for analysis.

finite spacing. The fringing capacitances are also calcu-
lated [8] and compared with the experimental data of
Napoli and Hughes [9].

II. EqQuivaLeNT CiRCUIT PARAMETERS
OF GAP STRUCTURE

The physical gap structure in the strip conductor of
the microstrip transmission line is shown in Fig. 1. The
arbitrary discontinuity at a junction of two transmission
lines can be generally represented by either the equiv-
alent tee or pi circuit [10]. It is preferable to represent
the gap structure with the equivalent pi circuit as shown
in Fig. 2, because the parameters of the equivalent pi
circuit show the physical meanings well. The shunt-gap
capacitance C, can be inferred from the effect of the dis-
order of the electrostatic field distribution at the edge
of the strip conductor. The series capacitance C, arises
from the coupling effect of the adjacent strip conduc-
tors. The terminal plane T of the equivalent circuit in
Fig. 2 is chosen at the edge of the strip conductor.

Let the electric wall or the magnetic wall be placed
along the center line as shown in Fig. 2(a). This corre-
sponds to the equivalent circuit with a short circuit or
an open circuit in the symmetrical plane. Hence, the
equivalent-circuit parameters C, and C, for the new
equivalent circuit shown in Fig. 2(c) are given by

Ce= Cq + 20, (1)
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Fig. 3. Abruptly ended strip conductor in microstrip transmission
line. (a) Physical structure. (b) Equivalent circuit.

Fig. 4. Analytical configuration of gap in microstrip
transmission line.

Cm = Ca (2)

where the subscripts e and m correspond to the electric
and magnetic walls, respectively.

The abruptly ended strip conductor can be repre-
sented by the equivalent circuit as shown in Fig. 3. The
fringing capacitance C;, which arises from the disorder
of the electrostatic field at the edge of the strip con-
ductor, can be obtained when the gap is of infinite
spacing.

The analytical configuration of the gap is illustrated
in Fig. 4. If the electric walls or the magnetic walls are
placed at y=0 and y=»5, the total capacitance Ci is
given by

Cu= Co+ 2C, i=em 3

where Cy is the line capacitance of the uniform micro-
strip transmission line with its length of b—s. Let the
three-dimensional potential Green’s function, satisfy-
ing the boundary conditions with the electric walls
(i=¢€) or the magnetic walls (¢=m) at y=0, and b be
Gi(x, v, zlx', v’, '), and the charge distribution on the
strip conductor be p;(x, v, 2). Then the capacitance Cy;
is given by the variational expression which is stationary
with respect to arbitrary first-order variations in the
charge distribution p,(x, v, ) [11]:

1 ff pi(x, ¥, 2)Gi(x, Y, % le, ¥, )i, ¥, 2) dvdv’

a:_ [fpi(x, v, %) dv:r

where the integral is to be taken through all the volume
in which the charge is distributed. Since this is a “lower
bound” type of variational expression, the capacitance
can be obtained by maximizing, with a suitable choice
of the charge distribution as a trial function,

)
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III. DERIVATION OF GREEN’S FUNCTION

The three-dimensional potential Green's function is
the solution of the following Poisson’s equation:

1

ViGi(z, 3, 3l y', &) = — —d(x — &)o(y — ¥)8(z — &) (3)
€

where §(x —x') is a Dirac’s delta function. If it is as-

sumed that the strip conductor is infinitely thin, the

Green's functions for the case g =/ are adequate for the

calculation of the capacitance C,, using the variational

expression (4). Of course, the Green’s functions should

satisfy the required boundary and continuity conditions.

The Green’s function G.(x, v, z[ %', v/, h) for the elec-
tric walls should satisfy the following conditions:

G.0,y, 3,9, k) =0 (6a)
Ga,y, 22",y ) =0 (6b)
Ge(x,0,z|%", 9/, k) = 0 (6¢)
G2, 8, 32",y b)) = 0 (6d)
Go(x,v,0]a", 9", h) = 0 (6e)
Go(x, v, clx', v, ) = 0 (6f)
Go(x, v, h—0|a’, ¥, b) = G.(x,y, h+0\|a’, ¥, k) (6g)

a d
_Ge(%, Y, h—olx,s y’) h) = '_Ge(x’ Vs h+0ix,, y,s h) (6h)
dx ax

g J
_Ge(xa y7h_0!xlay/7 h) = _Ge(x; ¥, h+05x/73"; h) (61)
9y dy

The Poisson’s equation (5) can be readily solved as a
linear combination of hyperbolic sinusoidal functions.
By applying the above boundary conditions to the solu-
tion, G.(x, v, zlx’, 3, k) is found to be

Ge(x, v, 2|4/, ¥/, h)

° 2 mrx\ | [(mwx’
Z E sin sin
171/ a a

m=1 n=1

. (mry > . <mry’
* 81 sin
b b

sinh (yma(c — £)), 0=z=142

4 . <m-1rx> . <m1rx’ >
sin sin
ab')’mnrmn a a
# nwy’
-sin < ';ry ) sin <%y> sinh (ymn(c — 3))

sinh (ymah), h£z=5¢ (7N

ma\2 nmw \?2
Vo) (7)
Tpn = € cosh (yumph) sinh (yma(c — k)
+ sinh (ymn#) cosh (yma(c — B)). (9)

) sinh ()

where

~

8)

Ymn =

On the other hand, the Green’s function G,.(x, y, z] x’,
9’y k) for the magnetic walls should satisfy the following
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boundary conditions at y=0 and y=25:

a
T Gm(x) 0, le’, 3": h) =0 (103,)
dy

9
— Gu(x, b, 3|2, 9", k) = 0. (10b)
dy

The other boundary and continuity conditions are the
same as the case of the Green’s function G.(x, v, z|«’,
¥, k). Through similar mathematical manipulations,
Gnl(x, v, z] x’, ', k) can be derived as follows:

Gn(x, y, 2\2, ¥/, h)

pIp I

. < m—/rx) . (mqrx’ >
sin sin
m=1 n=0 ab')’mnpmn a a
nm nawy’ N
- oS <~b—y> cos <—bl> sinh (yma%)

B)), 0<z<h

2L mmwx max’
> sin < ) sin < >
m=1 n=0 a/b’Ymnan a a
nw nwy’
-Cos <Ty> cos <—bl> sinh (Ymn(c — %))

¢ (11)

-sinh (7,,,,,(0 —

-sinh (vmah), h =z

fIA

where

{2, =20
Opn =
1, n ¥ 0.

The term for n=01in (11) can be written as

* 1 2 mwx\ | [(mrx’\ | mmws
> - sin ) sin ) sinh < >
m=1 O MTLmg a a a

mvr(c— h))

0
=1 2 L mEx\ | [mEr’\ ma{c—2)
> - sin sin sinh ———)
m—1 & mwlmo a a a

mrh
-sinh < > , h
a

It should be noted that the term, except for the co-
efficient 1/b, corresponds to the two-dimensional
Green’s function in the rectangular boundary for the
cross section of the uniform microstrip transmission line
obtained by Yamashita [12]. This fact indicates that
the capacitance calculated with (12) is the line capaci-
tance of the uniform microstrip transmission line with
its length of 5.

A

2=

Z

IIA
A

c. (12)

I[V. FORMULATION OF EQUIVALENT
CircuiT PARAMETERS

For the infinitely thin strip-conductor case, the charge
distribution may take the form

pi(®, 3, 2) = pi (%, y)o(z — ). (13)
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Then (4) becomes

[ et 96y 1, 3, ot ) asas

[[otna]

As a charge distribution on an infinitely thin strip con-
ductor of the uniform microstrip transmission line, the
following expression has been used by Yamashita [13]
and found to give sufficiently accurate results on the
characteristic impedance and the phase velocity:
w
<.

2( a>3 ’ a
g 5 — —
w 2 2 2

It is reasonable to consider that the charge density in
the longitudinal direction also increases near the edge
of the strip conductor. Hence the following form of the
charge distribution is assumed in this paper:

- (19)

fle) =1+

(15)

p./ (2, ) = f(w)g(y) (16)
and
b s b b
05 '——§’3’—"§—
2 2 2172
e B (b2 L)
o) - P\ T2l T2 an
g = boos { bl b s
————5h = y__1§___
2 2172 2
) { b)<b s ;
> O e R

where the shield walls are assumed to be sufficiently
apart from the strip conductor. The coefficient K is to
be determined so as to maximize the capacitance Ci,.

The capacitances Ci, Cin, and Cp can be obtained by
substituting (7), (11), (12), (15), and (17) into (14) as
follows:
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where
2a maw 2a \? mrw
Pm=2< >sin< >+3< > cos(————)
maTw 2a mTw 2a
2a \? mEw 2a \*
=) (%)~ ()
MTW 2a maw
mrw 2a \*
(5 o(2)
2a MW
2b nws 26\ . [nws
(o) = () ¥ ) ()
ns 20 nas 2
< 2b >< 26 nws  nrh
@)l )
nws/ \ nwh 2b 2b
-sin { ———
2b
2b nws 2b nws
r= () oo () + 5 () = (50)
nws 2b nws 2b
< 2b 2b nws  nwh
)T
nws/ \ nrh 2b 2b
. (mrh >]
-sin .
2b
Numerical data for the equivalent circuit parameters
of the gap can be readily obtained by computing the

above formulas with the aid of a digital computer and
using (1)-(3).

(21)

Il

Qn

(22)

(23)

V. NUMERICAL RESULTS

The formulas derived above are for the gap in the
shielded microstrip transmission line in the strict sense.
However, when the shield walls in Fig. 4 are sufficiently
removed from the strip conductor, the structure ap-
proaches the microstrip case. The numerical computa-
tions were carried out in this paper for the case where
the effects of the shield walls are negligible.

25 s h\?
Zp(1-24x —>
16 b b
Cp = (18)
© 0 4Pm2Rn2 2
> > ~—< > sinh (yma#) sinh (yma(c — £))
m=1,3 n=1,3,++ a'Ymnrmn b
2 b <1 ’ + K h>2
16 b b
Ctm = (19)
© 2P s \? mwh mw(c — k)
>, ( —-4+ K —) sinh sinh >
m=1,3, ma Lo b a a
@ 0 4Pm2 n2 s 2
+ > > 0 <-> sinh (Ymak) sinh (Yma(c — %))
m=1,%,-++ n==2,4,-. a»'Ymann b

25 The values of the gap capacitances C, and C, for 50-Q
— - microstri ission li ith the dielectric thick-

16 strip transmission lines with the dielectric thic
Co=— ; (20) ness of 0.5 mm are plotted as a function of s/k in Fig. 5.
> 2P sin <m1rh> sin <m7r(c—h)> The series capacitance C, decreases as the gap spacing
n=1,3 maLmg a a increases. This tendency has been expected because the
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Fig. 5. Gap capacitances for 50-2 microstrip transmission

line as a function of s/& (=0.50 mm).

TABLE 1
OprriMUM COEFFICIENT OF CHARGE DISTRIBUTION

S/hrl 213 51 7 110 {15 1 213145} T7(110115

0.02 2 2 2 2 2 2]l]2(o0jo0otofjofo)Jo]ofo

0.04 22]2 2 2 2 2ro0fo0)J]0c|lOo}jO{O0]joO]|] O

0.1 2121221212100l o0of{o]oOo}jo]ofoO
0.2 212121221 110300100 0] O} 0O
0.4 21232111121y 0lO0f0]JO}JO|O]O| O
0.6 21211 1 1 1 1 1lojJo|jofolofo]o
1.0 21111 1 1 1 1 1 1 1 1 1 1 1 1
2.0 211 1 1 1 1 1 1 1 1 1 1 1 1 1

Note: Z=50 Q; h=0.50 mm.

electrostatic coupling between two conductors becomes
loose when the conductors keep apart from each other.
When the ratio s/k is sufficiently large, C, becomes
negligible and the structure approaches the simple
abruptly ended strip conductor.

The numerical calculations were carried out by the
digital computer HITAC 5020 F. The summation of
the infinite series was truncated when the last term
added was less than one 108th of the first term. The cal-
culation time of C, and C, was about 200 s/structure,
although it depended on the dimensions of a gap struc-
ture. Of course, the coefficient K of the charge distribu-
tion g(y) was chosen so as to maximize the variational
expression. In order to reduce the computation time,
integers were employed for K. Optimum coefficients for
the electric and magnetic walls are tabulated in Table I.
It can be seen from Table I that the charge distributions
for the electric and magnetic walls take the same shape
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Fig. 7. Gap capacitances for microstrip transmission line as a

function of s/% (& =10, £=0.50 mm).

when the gap spacing becomes large, and that we may
set K equal to unity for calculating the fringing ca-
pacitance of the abruptly ended strip conductor.

The calculated gap capacitances for various structures
are shown in Figs. 6 and 7. Fig. 8 shows the normalized
strip width w/Z as a function of relative dielectric con-
stant €. for typical values of characteristic impedance.

Since the numerical data for the fringing capacitance
of the abruptly ended strip conductor are useful for
the designs of filters, open stubs, and so on, the calcu-
lated results for various parameters are shown in Fig.
9. The computation time C; was about 40 s/structure,
because the coefficient K was set equal to unity before-
hand.

The present theory was compared with the experi-
mental data of Stinehelfer for the series gap capacitance
Gy, with €,=8.875, £=0.508 mm, and w=0.508 mm.
The calculated gap capacitances for the parameters are
shown along with the experimental ones in Fig. 10. It is
seen in the figure that the calculated values are in
fairly good agreement with the measured values. The
fringing capacitance of the abruptly ended strip con-
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strip transmission line.

ductor calculated by this theory was compared with the
one experimentally obtained by Napoli and Hughes.
Since the experimental data have been obtained in
terms of an effective increase in line length, the calcu-
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lated fringing capacitance was transformed into the
same expression, based on the following equation:
Al Zo?)

— = C;—

A ) 24)

where Z, is a characteristic impedance and v a phase
velocity. Fig. 11 compares the calculated and measured
fringing effect, and shows a good fit.

VI. CoNCLUSION

In this paper the gap in the strip conductor of the
microstrip transmission line is analyzed by the applica-
tion of a variational principle. The equivalent circuit
parameters of the gap are formulated using potential
Green’s functions and approximate charge distributions.
The theoretical formulas can be applied to the {ringing
effect of the abruptly ended strip conductor when the
gap is of infinite spacing. Numerical calculations are
carried out with the aid of a digital computer. The
theoretical results are compared with the published
experimental data, and are shown to give accurate
results.
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A Proposed Lumped-Element Switching
Circulator Principle

REINHARD H. KNERR, MEMBER, IEEE

Abstract—Two different analytical methods, the complex con-
jugate input admittance approach and the eigenvalue analysis, show
the possibility of building a fast switching lumped-element circulator.
In conventional switching circulators, switching is achieved by chang-
ing the required magnetic biasing field. The proposed principle, which
is valid for circulators of all types, is especially interesting for lumped-
element circulators where the switching may be accomplished by
simply changing two capacitor values. The capacitors could be
switched by varying voltages on semiconductors thus permitting very
fast switching. The analysis has been experimentally verified. No
attempt to obtain optimization of a specific design was made.

INTRODUCTION

N THE COURSE of efforts to develop a high-per-

formance photo-processed lumped-element circu-

lator and appropriate analysis [1]-[3], it was discov-
ered that it should be possible to switch the sense of
circulation by switching parameters other than the mag-
netic biasing field. While this observation is valid in
principle for circulators of all types, it is especially in-
teresting for lumped-element circulators where the
switching may be accomplished simply by changing
lumped capacitors. In principle the capacitors could be
switched by varying voltages on semiconductors, thus
permitting very fast switching. The possibility of such a
switching circulator was treated in passing in [2] and
[3]. This paper will expand upon the analysis of the
device.

In 1965 Konishi [4] and Dunn and Roberts [5] pub-
lished papers describing lumped-element circulators at
the heart of which were three inductors coupled through
a common ferrite disk and resonated by individual ca-

Manuscript received July 14, 1971; revised September 13, 1971.
The author is with Bell Laboratories, Inc., Allentown, Pa. 18103.

pacitors. Various approaches have been taken to an-
alyze this basic circulator type [1]-[8]. The author in-
volves [1] an extension of Deutsch and Wieser’s method
[7] that will be referred to as the complex input-admit-
tance method. The analysis of the more complex struc-
tures studied by the author is reported in [2] and [3].
This is an eigenvalue analysis that has been found
extremely valuable in providing a fundamental under-
standing of the circulator operation and near quantita-
tive performance predictions.

In this paper, each of these approaches will be used
to demonstrate the principle of capacitive switching.
References [2] and [3] will be relied upon for details of
the eigenvalue analysis. Since [1] does not give any
details of the complex input-admittance analysis, it will
be outlined in this paper.

I. Tae CoMPLEX INPUT-ADMITTANCE ANALYSIS

There is a well-known theorem [9] that states: a loss-
less three-port can only be matched at all three ports if
it contains a lossless nonreciprocal element, and such a
matched three-port represents an ideal circulator.

If the three-port in Fig. 1 is represented by

Vl [¢4 ,8 Y "1‘1
Vol=|v a B i (1)
Vs 8 v « I_’Lz
i.e., [V]=[Z]li], then this three-port is lossless if
Re(e) =0 and g = — v* (2)

where v* designates the complex conjugate of . It has
been shown that the impedance matrix of the three-port



