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ditions, the overall solution error may not be minimal.

This is a disadvantage of the method-

fact that the functional is only made

not minimized,
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An Analysis of Gap in Microstrip

Transmission Lines

MINORU MAEDA, MEMBER, IEEE

Absfracf—Although microstrip transmission lifes have been

widely used in microwave integrated circuits, the discontinuity struc-

tures in the microstrip transmission lines such as a gap, an abruptly

ended strip conductor, and so on, have hardly been analyzed. An

analytical method and numerical results for a gap capacitance in the

microstrip transmission line are described. The equivalent circuit

parameters are formulated with three-dimensional Green% func-

tions, based on a variational principle. The numerical results are in

good agreement with the published experimental data. The fringing

effect of an abruptly ended strip conductor is also investigated.

I. INTRODUCTION

w

ITH THE RECENT development of micro-

wave integrated circuits, microstrip transmis-

sion lines have been widely used as fundamental

structures. Since the microwave integrated circuits are

fabricated through many processes, such as vacuum

deposition, sputtering, electroplating, photoetching, and

so on, it is primarily important to design the circuit

precisely.

Although a great deal of work has been published on

the properties of the microstrip transmission lines [1 ]–

[5], the theoretical and/or experimental results ob-

tained thus far have been almost entirely limited to the
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characteristic impedance and the phase velocity. Prac-

tical microwave integrated circuits, however, have been

constructed using a variety of discontinuity structures

in the strip conductor, such as a gap, an abruptly ended

strip conductor, a tee junction, and so on. Since the dis-

continuity structures have not been investigated yet,

there appears to be a need for rigorous theoretical for-

mulas on the discontinuity structures.

This paper describes an analytical method and nu-

merical results for a gap capacitance in the strip con-

ductor of the microstrip transmission line. The gap

capacitance of the symmetric-strip transmission line

has been investigated theoretically and experimentally

by Altschuler and Oliner [6]. For the gap capacitance of

the microstrip transmission line, however, only experi-

mental results obtained by Stinehelfer have been pub-

lished [7]. The analytical method presented here em-

ploys a variational principle for formulating the prob-

lems based on an electrostatic approximation, and de-

rives the theoretical expressions for the equivalent cir-

cuit parameters using three-dimensional potential

Green’s functions. The numerical results, obtained with

the aid of a digital computer, are compared with the

published experimental data. The derived formulas can

be applied to investigate the fringing effect of the

abruptly ended strip conductor when the gap is of in-
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Fig. 1. Physical structure of gap in microstrip transmission line.
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Fig. 2. Gapinmicro~trip transmission line. (a) Physical structure.
(b) Equivalent cu-cuit. (c) Equivalent circuit for analysis.

finite spacing. The fringing capacitances are also calcu-

lated [8] and compared with the experimental data of

Napoli and Hughes [9].

II. EQUIVALENT CIRCUIT PARAMETERS

OF GAP STRUCTURE

The physical gap structure in the strip conductor of

the microstrip transmission line is shown in Fig. 1. The

arbitrary discontinuity at a junction of two transmission

lines can be generally represented by either the equiv-

alent tee or pi circuit [10]. It is preferable to represent

the gap structure with the equivalent pi circuit as shown

in Fig. 2, because the parameters of the equivalent pi

circuit show the physical meanings well. The shunt-gap

capacitance C. can be inferred from the effect of the dis-

order of the electrostatic field distribution at the edge

of the strip conductor. The series capacitance cb arises

from the coupling effect of the adj scent strip conduc-

tors. The terminal plane T of the equivalent circuit in

Fig. 2 is chosen at the edge of the strip conductor.

Let the electric wall or the magnetic wall be placed

along the center line as shown in Fig. 2(a). This corre-

sponds to the equivalent circuit with a short circuit or

an open circuit in the symmetrical plane. Hence, the

equivalent-circuit parameters C. and Cm for the new

equivalent circuit shown in Fig. 2(c) are given by

=3w -1
CJcf

T
T

(0) (b)

Fig. 3. Abruptly ended strip conductor in microstrip transmission
line. (a) Physical structure. (b) Equivalent circuit.

Fig. 4. Analytical configuration of gap in microstrip
transmission line.

cm = c. (2)

where the subscripts e and m correspond to the electric

and magnetic walls, respectively.

The abruptly ended strip conductor can be repre-

sented by the equivalent circuit as showrl in Fig. 3. The

fringing capacitance Cf, which arises from the disorder

of the electrostatic field at the edge of the strip con-

ductor, can be obtained when the gap is of infinite

spacing.

The analytical configuration of the gap is illustrated

in Fig. 4. If the electric walls or the magnetic walls are

placed at y = O and y = b, the total capacitance Cl< is

given by

Cti = co + 2CZ, i=e, m (3)

where CO is the line capacitance of the luniform micro-

strip transmission line with its length of b–s. Let the

three-dimensional potential Green’s function, satisfy-

ing the boundary conditions with the electric walls

(i= e) or the magnetic walls (i= m) at y = O, and b be

G~(x, y, ZI x’, y’, z’), and the charge distribution on the

strip conductor be pi(x, y, z). Then the capacitance Cti
is given by the variational expression which is stationary

with respect to arbitrary first-order variations in the

charge distribution P,(x, y, z) [11]:

1 SsPi(*, Y, z)G& Y, z, \ *’, Y’, z’)P@, Y’, z’) dvdv’
—

~“

[1 1

2
— (4)

Pi(x, y, z) dv

where the integral is to be taken through all the volume

in which the charge is distributed. Since this is a ‘(lower

bound” type of variational expression, the capacitance

can be obtained by maximizing, with a suitable choice

of the charge distribution as a trial function,
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III. DERIVATION OF GREEN’S FUNCTION boundary conditions at y = O and y = b:

The three-dimensional potential Green’s function is

the solution of the following Poisson’s equation: ; G~(*, O, zI%’, y’, h) = O (lOa)

VzG@, y, 21 Z’, y’, Z’) = – ~ 8($ – %’)ti(y – Y’)8(Z – Z’) (5)
e

where 8(x —x’) is a Dirac’s delta function. If it is as-

sumed that the strip conductor is infinitely thin, the

Green’s functions for the case z = h are adequate for the

calculation of the capacitance C~, using the variational

expression (4). Of course, the Green’s functions should

satisfy the required boundary and continuity conditions.

The Green’s function G,(x, y, ZI x’, y’, h.) for the elec-

tric walls should satisfy the following conditions:

G.(O, y, Z I x’, y’, h) = O (6a)

G,(a, y, Z I x’, y’, k) = O (6b)

G.(z, O, Z] x’, y’, h) = O (6c)

G,(z> b, Z\ z’, y’, h) = O (6d)

G&y, O\ %’, y’, h) = O (6e)

G,(*, y, Cl X’, y’, h) = O (6f)

G,(*, y, lz-01#, y’, h) = G.(z, y, h+Ol#, y’, h) (6g)

where

~ G,(*, Y, h–o I z’, Y’, h) = ~ G~(x, Y, Iz+O \ z’, y’, h). (6i)

The other boundary and continuity conditions are the

same as the case of the Green’s function G,(x, y, z I x’,

y’, h). Through similar mathematical manipulations,

G~ (x, y, z I x’, y’, h) can be derived as follows:

Grn(x, y, 21X’, y’, k)

“Co’(?)cos(%)snh(”mn

“cos(?)cos(%i)sinhc-z))

The Poisson’s equation (5) can be readily solved as a

linear combination of hyperbolic sinusoidal functions.

By applying the above boundary conditions to the solu-

tion, G.(x, y, z x’, y’, h) is found to be

~ g --+&‘in(%sin(%)
“Sin(?)sin(%sinh(’mnz)
. sinh (~~.(c – h)), ()~,z~h

——

; Gm(x, b, 21x’, y’, h) = O. (lOb)

The term for n = O in (11) can be written as

i:& ‘in(%)sin(%)sinhc
“Sinh(m=(:-h))Oszsh

i;&
m

sin(y)sine)~inh(mr(~-z))

(12)
L \a/

It should be noted that the term, except for the co-

“sin(%)sin(%)sinh(~mn(’-z))
efficient I/b, corresponds to the two-dimensional

Green’s function in the rectangular boundary for the

cross section of the uniform microstrip transmission line

osinh (7J2), j~~z~c (7) obtained by Yamashita [12]. This fact indicates that

the capacitance calculated with (12) is the line caRaci-
where

. .
tance of the uniform microstrip transmission line with

,.. = {(:)2+ (YY
its length of b.

(8)

IV. FORMULATION OF EQUIVALENT
I’m. = e, cosh (-y~.lz) sinh (y~n (C — h)) CIRCUIT PARAMETERS

+ sinh (y~nk) cosh (Y~~(c – h)). (9) For the infinitely thin strip-conductor case, the charge

On the other hand, the Green’s function G~(x, y, z] x’,
distribution may take the form

y’, h) for the magnetic walls should satisfy the followkg Pi(x, y, z) = pi’(x, y)a(z – k). (13)
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Then (4) becomes

1 SS
IX’(X, y) I&(x, y, h ] x’, y’, h)pi’(x’, y’) dsds’

—.

Cti
[S~&y)ds]2

. (14)

As a charge distribution on an infinitely thin strip con-

ductor of the uniform microstrip transmission line, the

following expression has been used by Yamashita [13]

and found to give sufficiently accurate results on the

characteristic impedance and the phase velocity:

101
3

j(z) =l+lx–; ,
a w

x—– 5—.
22

(15)
w

It is reasonable to consider that the charge density in

the longitudinal direction also increases near the edge

of the strip conductor. Hence the following form of the

charge distribution is assumed in this paper:

,m’(% Y) = .f(*)g(Y) (16)

and

bs bb
0, ——— ~y—–~–

22 22

.

(1 )1+; y–; –;+; +lL ,

g(Y) = {
bs

(17)

I
.———lasy–:+
22 2

where the shield walls are assumed to be sufficiently

apart from the strip conductor. The coefficient K is to

be determined so as to maximize the capacitance C,,.

The capacitances C,,, C,., and CO can be obtained by

substituting (7), (11), (12), (15), and (17) into (14) as

follows :

where

‘m= 2(&)sin(z)+3(&lc0s(Y)

-6(&Ysin(F)-’(&Y

“cos(%?-’(z~

‘n= (E)cOs(z)+K[(:) sin(:;)

-(:)(%) sinr=+%)

( )1

mrh
. sin —

‘n= (z)~s(z)+K[(:)cos(::)

-(z)(%) cosr<+%)

( )1
mrh

. sin ——
2b “
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(21)

(22)

(23)

Numerical data for the equivalent circuit parameters

of the gap can be readily obtained by computing the

above formulas with the aid of a digital computer and

using (l)-(3).

V. NUMERICAL RESULTS

The formulas derived above are for the gap in the

shielded microstrip transmission line in the strict sense.

However, when the shield walls in Fig. 4 a,re sufficiently

removed from the strip conductor, the structure ap-

proaches the microstrip case. The numerical computa-

tions were carried out in this paper for the case where

the effects of the shield walls are negligible.

(18)
(

~2

;b l–; +Ki
)

C,e . ——
4Pm2Rn2 S 2

i 5 ~7mnrmn(J sinh (~~.h) sinh (~~. (c — h))
‘m=l ,3,... n=l,3, . . .

(

;b &:+&

)
I’Jtm = —

1-i + +++r(’!:))
-—–(19)

~=l;, . . *(

4P7n2QW2j 2Sinh(7mnh)sinh (~~n(c – ‘))
+55

m=l,’3, . . . ‘n=?, .’l, ()a-y*~17%. b

The values of the gap capacitances C. and Cb for 50-fl
:(b–s) microstrip transmission lines with the dielectric thick-

Co = (20) ness of 0.5 mm are plotted as a function Of s/h in Fig. 5.

~=l; . g Sinh
(?)sinh(m”(:-’))

The series capacitance cb decreases as the gap spacing

increases. This tendency has been expected because the
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5. Gapcapacitanc~s for50-Q microstrip transmission
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TABLE I

OPTIMUM COEFFICIENT OF CHARGE DISTRIBUTION

Note: 2=50 Q; lt=O.50 mm.

electrostatic coupling between two conductors becomes

loose when the conductors keep apart from each other.

When the ratio s/h k sufficiently large, Cb becomes

negligible and the structure approaches the simple

abruptly ended strip conductor.

The numerical calculations were carried out by the

digital computer HITAC .5020 F. The summation of

the infinite series was truncated when the last term

added was less than one 10%h of the first term, The cal-

culation time of C. and cb was about 200 s/structure,

although it depended on the dimensions of a gap struc-

ture. Of course, the coefficient K of the charge distribu-

tion g(y) was chosen so as to maximize the variational

expression. In order to reduce the computation time,

integers were employed for K, Optimum coefficients for

the electric and magnetic walls are tabulated in Table I.

It can be seen from Table I that the charge distributions

for the electric and magnetic walls take the same shape

slh

Fig. 6. Gap capacitances for 50-Q microstrip transmission
a function of s/h (e, = 10).
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Fig. 7. Gap capacitances for microstrip transmission line as a
function of s/h (c, = 10, h =0.50 mm).

when the gap spacing becomes large, and that we may

set K equal to unity for calculating the fringing ca-

pacitance of the abruptly ended strip conductor.

The calculated gap capacitances for various structures

are shown in Figs. 6 and 7. Fig. 8 shows the normalized

strip width w/lz as a function of relative dielectric con-

stant e, for typical values of characteristic impedance.

Since the numerical data for the fringing capacitance

of the abruptly ended strip conductor are useful for

the designs of filters, open stubs, and so on, the calcu-

lated results for various parameters are shown in Fig.

9. The computation time Cf was about 40 s/structure,

because the coefficient K was set equal to unity before-

hand.

The present theory was compared with the experi-

mental data of Stinehelfer for the series gap capacitance

C& with e,= 8.875, h= O.508 mm, and w =0.508 mm.

The calculated gap capacitances for the parameters are

shown along with the experimental ones in Fig. 10. It is

seen in the figure that the calculated values are in

fairly good agreement with the measured values. The

fringing capacitance of the abruptly ended strip con-
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ductor calculated by this theory was compared with the

one experimentally obtained by Napoli and Hughes.

Since the experimental data have been obtained in

terms of an effective increase in line length, the calcu-

2

I

0.5

0.2

!

:E#HE5i!
010.20.512 50

w/h

Fig. 11. Comparison of this theory with measured fringing effect
of abruptly ended strip conductor.

lated fringing capacitance was transformed into the

same expression, based on the following equation:

(24)

where ZO is a characteristic impedance and v a phase

velocity. Fig. 11 compares the calculated and measured

fringing effect, and shows a good fit.

VI. CONCLUSION

In this paper the gap in the strip conductor of the

microstrip transmission line is analyzed by the applica-

tion of a variational principle. The equivalent ~ircuit

parameters of the gap are formulated using potential

Green’s functions and approximate charge distributions.

The theoretical formulas can be applied to the fringing

effect of the abruptly ended strip conductor when the

gap is of infinite spacing. Numerical calculations are

carried out with the aid of a digital computer. The

theoretical results are compared with the published

experimental data, and are shown to give accurate

results.
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A Proposed Lumped-Element Switching

Circulator Principle

REINHARD H. KNERR, MEMBER, JEEE

Afrstract-Two different analytical methods, the complex con-

jugate input admittance approach and the eigenvalue analysis, show
the possibility of bnildkg a f ast switchkg lumped-element circulator.
In conventional switching circulators, switching is achieved by Chang-
ing the required magnetic biasing field. The proposed principle, which
is valid for circulators of all types, is especially interesting for lumped-
element circulators where the switching may be accomplished by
simply changing two capacitor values. The capacitors could be

switched by varying voltages on semiconductors thus permitting very
fast switching. The analysis has been experimentally verified. No

attempt to obtain opttilzation of a specific design was made.

INTRODUCTION

I
N THE COURSE of efforts to develop a high-per-

formance photo-processed lumped-element circu-

lator and appropriate analysis [1 ]– [3 ], it was discov-

ered that it should be possible to switch the sense of

circulation by switching parameters other than the mag-

netic biasing field. While this observation is valid in

principle for circulators of all types, it is especially in-

teresting for lumped-element circulators where the

switching may be accomplished simply by changing

lumped capacitors. In principle the capacitors could be

switched by varying voltages on semiconductors, thus

permitting very fast switching. The possibility of such a

switching circulator was treated in passing in [2] and

[3]. This paper will expand upon the analysis of the

device.

In 1965 Konishi [~] and Dunn and Roberts [5] pub-

lished papers describing lumped-element circulators at

the heart of which were three inductors coupled through

a common ferrite disk and resonated by individual ca-

Manuscript received July 14, 1971; revised September 13, 1971.
The author is with Bell Laboratories, Inc., Allentown, Pa. 18103.

pacitors. Various approaches have been taken to an-

alyze this basic circulator type [1 ]– [8 ]. The author in-

volves [1] an extension of Deutsch and Wieser’s method

[7] that will be referred to as the complex input-admit-

tance method. The analysis of the more complex struc-

tures studied by the author is reported in [2] and [3].

This is an eigenvalue analysis that has been found

extremely valuable in providing a fundamental under-

standing of the circulator operation and near quantita-

tive performance predictions.

In this paper, each of these approaches will be used

to demonstrate the principle of capacitive switching.

References [2] and [3] will be relied upon for details of

the eigenvalue analysis. Since [1] does not give any

details of the complex input-admittance analysis, it will

be outlined in this paper.

I. THE COMPLEX INPUT-ADMITTANCE ANALYSIS

There is a well-known theorem [9] that states: a loss-

Iess three-port can only be matched at all three ports if

it contains a Iossless nonreciprocal element, and such a

matched three-port represents an ideal circulator.

If the three-port in Fig. 1 is represented by

El”Ii:I]
i.e., [V] = [z] [i], then this three-port is Iossless if

Re(a)=O and fl =-y*

(1)

(2)

where 7* designates the complex conjugate of y. It has

been shown that the impedance matrix of the three-port


